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Introduction to ApplicationCore

How to write a control system application?
I Goal: integrate device into a control system

I Often required: complex algorithms in software, e.g.:
I control loops
I model based computations
I automation routines

I Ideally: abstract away hardware details and provide high-level user interface
I Production-grade code quality required
I Keep long term maintenance in mind
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by Manu Cornet (www.bonkersworld.net)



Two approaches

Script-like approach
I Can be realised e.g. in EPICS records files

! Works well for simple projects without
complex algorithms

! Fast updates e.g. when firmware changes
% Hard to introduce real abstraction from

hardware details
% Typically doesn’t scale well with growing

complexity
% Difficult to maintain

Fully fledged server
I Usually C++ application based on control

system middleware

! Complex algorithms can be implemented
more easily

! Optimal performance
! Full freedom to implement abstraction
 Contineous integration tests possible, if

framework supports it
% High initial implementation effort required
% Typically doesn’t scale well for small

complexity
% Not so flexible
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In this tutorial...
Can we build a fully fledged server without most of its downsides?



Design of a control application
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Design of a control application
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← logical name mapping

← system integration

I Mapping layers give freedom to
change parts independently

I ChimeraTK: both can be
introduced later and thus are
optional at first



Design of a control application
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Modularise the application
I Self-containment reduces

complexity!
I Code easier to understand and

to maintain
I Modules might be reused
I Flexibility to enabled/disable

features where needed



Design of a control application
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I Configuration files add
flexibility:

I Same generic application
might work in different places
with different configuration



Design of a control application
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I Trigger all hardware readouts
by a common trigger

I Data consistency
I Ideally already realised in

hardware (but must still be
handled in software properly)



Introducing ApplicationCore
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MicroTCA AMC ApplicationCore
I Framework for writing control applications independent of

the control system middleware
I Unifies interfaces of DeviceAccess and the control system
I Encourage modularity of applications
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The structure of ApplicationCore
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I Modules merely have inputs
and outputs

I Implementations of algorithms
do not need to know how its
variables are connected

I Modern multithreading:
lock-free communication
between modules (“for free”)

I Perfect modularity, as modules
are self-contained

I Simpler code!
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Excursus: Update modes

I Analog to the client/server concept:
I Client/server is about who initiates a connection
I Update mode is about who initiates a data transfer

I A trigger makes it possible:
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Typical devices (and most control system applications)
I A typical “passive” device has poll-type read variables

and push-type write variables
I For push-type read, e.g. hardware interrupts are required



A simple ApplicationModule

struct Controller : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> sp{this, "temperatureSetpoint", "degC", "Description"};
ctk::ScalarPushInput<double> rb{this, "temperatureReadback", "degC", "..."};
ctk::ScalarOutput<double> cur{this, "heatungCurrent", "mA", "..."};

void mainLoop() {
const double gain = 100.0;
while(true) {

rb.read(); // waits until rb updated
sp.read(); // just get latest value of sp
cur = gain * (sp - rb);
cur.write();

}
}

};
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Rule of thumb
I Measurement data inputs are made push-type
I Parameters (e.g. from panel) are poll-type
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see example2/demoApp.cc in ApplicationCore source code on github (incl. following slides)



Define the application

struct ExampleApp : public ctk::Application {
ExampleApp() : Application("exampleApp") {}
~ExampleApp() { shutdown(); }

Controller controller{this, "Controller", "The Controller"};

ctk::PeriodicTrigger timer{this, "Timer", "Periodic timer (1000ms period)", 1000};

ctk::DeviceModule heater{"oven","heater"};
ctk::ControlSystemModule cs{"Bakery"};

void defineConnections();
};
static ExampleApp theExampleApp;
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Define the application

struct ExampleApp : public ctk::Application {
ExampleApp() : Application("exampleApp") {}
~ExampleApp() { shutdown(); }

Controller controller{this, "Controller", "The Controller"};

ctk::PeriodicTrigger timer{this, "Timer", "Periodic timer (1000ms period)", 1000};

ctk::DeviceModule heater{"oven","heater"};
ctk::ControlSystemModule cs{"Bakery"};

void defineConnections();
};
static ExampleApp theExampleApp;

No main() fu
nction

shall be
defined

, it is c
oming from the framework!
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Connect the module with device and control system - Step I
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void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");

controller.connectTo(heater, timer.tick); // use periodic timer as trigger for readout
controller.connectTo(cs);

}

Something is missing...
I A.connectTo(B) will connect all variables in A with the variables of the same name in B
I controller.sp is a control system variable and does not exist in the hardware device

I Explicitly connecting each variable is possible, but annoying
I We need to filter variables based on additional information
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void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");

controller.connectTo(heater, timer.tick); // use periodic timer as trigger for readout
controller.connectTo(cs);

}

Something is missing...
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Connect the module with device and control system - Step II

struct Controller : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> sp{this, "temperatureSetpoint", "degC", "Description", {"CS"}};
ctk::ScalarPushInput<double> rb{this, "temperatureReadback", "degC", "...", {"DEV", "CS"}};
ctk::ScalarOutput<double> cur{this, "heatungCurrent", "mA", "...", {"DEV"}};

void mainLoop() {
const double gain = 100.0;
while(true) {

readAll(); // waits until rb updated, then reads sp

cur = gain * (sp - rb);
writeAll(); // writes any outputs

}
}

};

tags
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Connect the module with device and control system - Step II
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void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");

controller.findTag("DEV").connectTo(heater, timer.tick);
controller.findTag("CS").connectTo(cs);

}

Tags
I Tag names can be arbitrarily chosen
I Any number of tags can be attached to each process variable
I Fancy searches possible as well...



Connect the module with device and control system - Step II
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void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");

controller.findTag("DEV").connectTo(heater, timer.tick);
controller.findTag("CS").connectTo(cs);

}

Tags
I Tag names can be arbitrarily chosen
I Any number of tags can be attached to each process variable
I Fancy searches possible as well...

That’s it!
I At this point, the application is complete and can run!



Adding an automation module
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Adding an automation module
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struct Automation : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> opSp{this, "operatorSetpoint", "degC", "...", {"CS"}};
ctk::ScalarOutput<double> actSp{this, "temperatureSetpoint", "degC", "...", {"Controller"}};
ctk::ScalarPushInput<uint64_t> trigger{this, "trigger", "", "..."};

void mainLoop() {
const double maxStep = 0.1;
while(true) {

readAll(); // waits until trigger received, then read opSp
actSp += std::max(std::min(opSp - actSp, maxStep), -maxStep); // ramp sp slowly
writeAll();

}
}

};

see example2a/demoApp.cc in ApplicationCore source code
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struct Automation : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> opSp{this, "operatorSetpoint", "degC", "...", {"CS"}};
ctk::ScalarOutput<double> actSp{this, "temperatureSetpoint", "degC", "...", {"Controller"}};
ctk::ScalarPushInput<uint64_t> trigger{this, "trigger", "", "..."};

void mainLoop() {
const double maxStep = 0.1;
while(true) {

readAll(); // waits until trigger received, then read opSp
actSp += std::max(std::min(opSp - actSp, maxStep), -maxStep); // ramp sp slowly
writeAll();

}
}

};

struct ExampleApp : public ctk::Application {
[...]
Controller controller{this, "Controller", "The Controller"};
Automation automation{this, "Automation", "Slow setpoint ramping algorithm"};
[...]

void defineConnections();
};

unchanged!
added

unchanged!



Adding an automation module
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struct Automation : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> opSp{this, "operatorSetpoint", "degC", "...", {"CS"}};
ctk::ScalarOutput<double> actSp{this, "temperatureSetpoint", "degC", "...", {"Controller"}};
ctk::ScalarPushInput<uint64_t> trigger{this, "trigger", "", "..."};

void mainLoop() {
const double maxStep = 0.1;
while(true) {

readAll(); // waits until trigger received, then read opSp
actSp += std::max(std::min(opSp - actSp, maxStep), -maxStep); // ramp sp slowly
writeAll();

}
}

};

void ExampleApp::defineConnections() { // (setDMapFilePath omitted)
automation.findTag("Controller").connectTo(controller);
automation.findTag("CS").connectTo(cs);
timer.tick >> automation.trigger;

controller.findTag("DEV").connectTo(heater, timer.tick);
controller.findTag("CS").connectTo(cs);

}

added

unchanged!



Configuration

I Configuration can be used in defineConnections() for static configuration

I It can also be connected as (never changing) variables to modules or the control system

struct ExampleApp : public ctk::Application {
[...]
ctk::ConfigReader config{this, "Configuration", "demoApp2a.xml"};
Automation automation;
[...]

};

void ExampleApp::defineConnections() {
[...]

if(config.get<int>("enableAutomation")) {
automation = Automation(this, "Automation", "Slow setpoint ramping algorithm");
automation.findTag("Controller").connectTo(controller);
automation.findTag("CS").connectTo(cs);
timer.tick >> automation.trigger;

}
[...]

}

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 16

<configuration>
<variable name="enableAutomation" type="int32" value="1"/>

</configuration>
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};
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<configuration>
<variable name="enableAutomation" type="int32" value="1"/>

</configuration>



Hierarchies

I Current variables in the control system:
I operatorSetpoint (writeable)
I temperatureSetpoint (read only)
I temperatureReadback (read only)
I enableAutomation (read only)

I Names are missing the context! Want to have:
I Automation/operatorSetpoint
I Controller/temperatureSetpoint
I Controller/temperatureReadback
I Configuration/enableAutomation

I In the example, we just need to connect to the control system differently:

findTag("CS").connectTo(cs);

This works on all modules in the application (and even saves two lines of code)!
I ApplicationCore allows to build arbitrary hierarchies:

I VariableGroup
I ModuleGroup

Should be used to structure the application logically!
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Control system integration

DOOCS server library

DOOCS client / panel
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Idea
I Introduce similar abstraction as for the

hardware access
I Not trivial - control system middleware

much more than just a communication
layer

I Try not to create a new control system!
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hardware access
I Not trivial - control system middleware

much more than just a communication
layer

I Try not to create a new control system!
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Control system integration

Control System Integration
Configuration Files

OPC UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Control System Adapter 

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

I EPICS: db files etc.
I rename variables
I enable control system

specific features (histories,
alarms...)
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Testing the application

Control System Adapter 
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Test
Application Core
Testable Mode
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Summary
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I ChimeraTK-ApplicationCore
unifies DeviceAccess and
ControlSystemAdapter

I Self-contained modules
I Modern multi-threading

(“for free”)
I Optional mapping layers to

catch interface changes
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I ChimeraTK-ApplicationCore
unifies DeviceAccess and
ControlSystemAdapter

I Self-contained modules
I Modern multi-threading

(“for free”)
I Optional mapping layers to

catch interface changes
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How to get started...

#include <ApplicationCore.h>
#include <PeriodicTrigger.h>
namespace ctk = ChimeraTK;

struct ExampleApp : public ctk::Application {
ExampleApp() : Application("exampleApp") {}
~ExampleApp() { shutdown(); }

ctk::PeriodicTrigger timer{this, "Timer", "Periodic timer (1000ms period)", 1000};

ctk::DeviceModule dev{"oven"};
ctk::ControlSystemModule cs{"Bakery"};

void defineConnections();
};
static ExampleApp theExampleApp;

void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");
dev.connectTo(cs, timer.tick);

}

Yes, this is 100% complete! (but requires the head revision of ChimeraTK...)
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Availability of ChimeraTK
I All ChimeraTK libraries are released as open source under LGPL license
I Source code: https://github.com/ChimeraTK
I Documentation: https://chimeratk.github.io
I Debian packages for Ubuntu 16.04: https://chimeratk.github.io
I Launchpad-hosted PPA (for all Ubuntu versions) is in preparation



Backup slides•
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New backends and features in existing backends

I New backends: OPC UA client; native EPICS client
I Logical name mapping features:

I Use parameters defined in ChimeraTK device descriptor (i.e. DMAP file) inside the map file, e.g. to
reuse the same map file for multiple target devices

I Support more data types for constants and variables (i.e. dummy registers)
I Subdevice backend features:

I Unfold address space of devices with different layout in the mother device, e.g. two scalar registers
(address and value)

I DOOCS backend:
I Support for more DOOCS types including aggregated data types

I PCI express backend:
I Support for interrupts
I Support for floating point values
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Introduce new supported data types in all ChimeraTK libraries

Currently supported data types: (u)int8, (u)int16, (u)int32, (u)int64, float, double, std::string
I bool

I Often provided by hardware, e.g. status bits
I Supported by many control systems, sometimes improved user experience compared to integer with

value 0 and 1

I void
I No data is transported
I Only useful in combination with push-type variables
I Represents an interrupt or event or trigger
I At least EPICS and DOOCS support something similar, exact representation should be discussed
I Also internally useful in applications to efficiently distribute events/triggers
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ControlSystemAdapter and ApplicationCore: bidirectional variables

Current situation: all variables in ApplicationCore are unidirectional
I Originally not implemented, since the concept is difficult and dangerous
I Variables should never really be bidirectional, that would lead to race conditions and infinite value

oscillations
I Important and valid use cases:

I Correction of an out-of-range value
I Automation which runs on user request to determine a value which otherwise can be changed by the

user (e.g. a calibration value)
I ...
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ApplicationCore: exception handling

Current situation: Exceptions cannot properly be handled in ApplicationCore - they are often thrown in
a non-user thread and just will terminate the application.

I logic_error exceptions point to a programming or configuration issue and usually occur directly
after starting the application. They should terminate the application.

I runtime_error exceptions can occur any time and should be properly handled without stopping the
application

I Handling should be done per device
I Exceptions should be caught automatically by ApplicationCore
I Error status can be published to the control system (status flag + message string of exception per

device)
I Each ApplicationModule using the faulty device will be automatically paused until the device is

back online
I Maybe: add per-variable flag showing which parts are offline (DOOCS supports this, what about

other control systems?)
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Direct connections between devices and the control system

(Experimental feature, not yet released...)
I ApplicationCore can guess the data type based on the information in the catalogue.
I Use the smallest possible data type fitting the data
I Direction can be derived from read/write flags:

I Read-only registers will be device-to-controlsystem
I Write-only registers (rare) will be controlsystem-to-device
I Read-write registers will also be controlsystem-to-device, since they are usually never changed by the

device (only readback of the current value possible)
I Transfer mode (poll/push) depends on register capabilities
I Planned: Exceptions from these automatic rules can still be made by providing the information

per-variable (or maybe per connectTo()?)
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