
ChimeraTK ApplicationCore•

Martin Hierholzer, Martin Killenberg

4. December 2018

7th MicroTCA Workshop for Industry and Research
DESY, Hamburg



Introduction to ApplicationCore

How to write a control system application?
I Goal: integrate device into a control system

I Often required: complex algorithms in software, e.g.:
I control loops
I model based computations
I automation routines

I Ideally: abstract away hardware details and provide high-level user interface
I Production-grade code quality required
I Keep long term maintenance in mind

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 2



Introduction to ApplicationCore

How to write a control system application?
I Goal: integrate device into a control system
I Often required: complex algorithms in software, e.g.:

I control loops
I model based computations
I automation routines

I Ideally: abstract away hardware details and provide high-level user interface
I Production-grade code quality required
I Keep long term maintenance in mind

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 2



Introduction to ApplicationCore

How to write a control system application?
I Goal: integrate device into a control system
I Often required: complex algorithms in software, e.g.:

I control loops
I model based computations
I automation routines

I Ideally: abstract away hardware details and provide high-level user interface

I Production-grade code quality required
I Keep long term maintenance in mind

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 2



Introduction to ApplicationCore

How to write a control system application?
I Goal: integrate device into a control system
I Often required: complex algorithms in software, e.g.:

I control loops
I model based computations
I automation routines

I Ideally: abstract away hardware details and provide high-level user interface
I Production-grade code quality required
I Keep long term maintenance in mind

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 2



Introduction to ApplicationCore

How to write a control system application?
I Goal: integrate device into a control system
I Often required: complex algorithms in software, e.g.:

I control loops
I model based computations
I automation routines

I Ideally: abstract away hardware details and provide high-level user interface
I Production-grade code quality required
I Keep long term maintenance in mind

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 2

by Manu Cornet (www.bonkersworld.net)



Two approaches

Script-like approach
I Can be realised e.g. in EPICS records files

! Works well for simple projects without
complex algorithms

! Fast updates e.g. when firmware changes
% Hard to introduce real abstraction from

hardware details
% Typically doesn’t scale well with growing

complexity
% Difficult to maintain

Fully fledged server
I Usually C++ application based on control

system middleware

! Complex algorithms can be implemented
more easily

! Optimal performance
! Full freedom to implement abstraction
 Contineous integration tests possible, if

framework supports it
% High initial implementation effort required
% Typically doesn’t scale well for small

complexity
% Not so flexible

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 3



Two approaches

Script-like approach
I Can be realised e.g. in EPICS records files
! Works well for simple projects without

complex algorithms
! Fast updates e.g. when firmware changes

% Hard to introduce real abstraction from
hardware details

% Typically doesn’t scale well with growing
complexity

% Difficult to maintain

Fully fledged server
I Usually C++ application based on control

system middleware

! Complex algorithms can be implemented
more easily

! Optimal performance
! Full freedom to implement abstraction
 Contineous integration tests possible, if

framework supports it
% High initial implementation effort required
% Typically doesn’t scale well for small

complexity
% Not so flexible

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 3



Two approaches

Script-like approach
I Can be realised e.g. in EPICS records files
! Works well for simple projects without

complex algorithms
! Fast updates e.g. when firmware changes
% Hard to introduce real abstraction from

hardware details
% Typically doesn’t scale well with growing

complexity
% Difficult to maintain

Fully fledged server
I Usually C++ application based on control

system middleware

! Complex algorithms can be implemented
more easily

! Optimal performance
! Full freedom to implement abstraction
 Contineous integration tests possible, if

framework supports it
% High initial implementation effort required
% Typically doesn’t scale well for small

complexity
% Not so flexible

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 3



Two approaches

Script-like approach
I Can be realised e.g. in EPICS records files
! Works well for simple projects without

complex algorithms
! Fast updates e.g. when firmware changes
% Hard to introduce real abstraction from

hardware details
% Typically doesn’t scale well with growing

complexity
% Difficult to maintain

Fully fledged server
I Usually C++ application based on control

system middleware
! Complex algorithms can be implemented

more easily
! Optimal performance
! Full freedom to implement abstraction

 Contineous integration tests possible, if
framework supports it

% High initial implementation effort required
% Typically doesn’t scale well for small

complexity
% Not so flexible

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 3



Two approaches

Script-like approach
I Can be realised e.g. in EPICS records files
! Works well for simple projects without

complex algorithms
! Fast updates e.g. when firmware changes
% Hard to introduce real abstraction from

hardware details
% Typically doesn’t scale well with growing

complexity
% Difficult to maintain

Fully fledged server
I Usually C++ application based on control

system middleware
! Complex algorithms can be implemented

more easily
! Optimal performance
! Full freedom to implement abstraction
 Contineous integration tests possible, if

framework supports it

% High initial implementation effort required
% Typically doesn’t scale well for small

complexity
% Not so flexible

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 3



Two approaches

Script-like approach
I Can be realised e.g. in EPICS records files
! Works well for simple projects without

complex algorithms
! Fast updates e.g. when firmware changes
% Hard to introduce real abstraction from

hardware details
% Typically doesn’t scale well with growing

complexity
% Difficult to maintain

Fully fledged server
I Usually C++ application based on control

system middleware
! Complex algorithms can be implemented

more easily
! Optimal performance
! Full freedom to implement abstraction
 Contineous integration tests possible, if

framework supports it
% High initial implementation effort required
% Typically doesn’t scale well for small

complexity
% Not so flexible

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 3



Two approaches

Script-like approach
I Can be realised e.g. in EPICS records files
! Works well for simple projects without

complex algorithms
! Fast updates e.g. when firmware changes
% Hard to introduce real abstraction from

hardware details
% Typically doesn’t scale well with growing

complexity
% Difficult to maintain

Fully fledged server
I Usually C++ application based on control

system middleware
! Complex algorithms can be implemented

more easily
! Optimal performance
! Full freedom to implement abstraction
 Contineous integration tests possible, if

framework supports it
% High initial implementation effort required
% Typically doesn’t scale well for small

complexity
% Not so flexible

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 3

In this tutorial...
Can we build a fully fledged server without most of its downsides?



Design of a control application

DOOCS server library

DOOCS client / panel

Application

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend
P
C
Ie

MicroTCA AMC

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 4



Design of a control application

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 5



Design of a control application

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 5

← logical name mapping

← system integration

I Mapping layers give freedom to
change parts independently

I ChimeraTK: both can be
introduced later and thus are
optional at first



Design of a control application

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 5

Modularise the application
I Self-containment reduces

complexity!
I Code easier to understand and

to maintain
I Modules might be reused
I Flexibility to enabled/disable

features where needed



Design of a control application

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 5

I Configuration files add
flexibility:

I Same generic application
might work in different places
with different configuration



Design of a control application

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 5

I Trigger all hardware readouts
by a common trigger

I Data consistency
I Ideally already realised in

hardware (but must still be
handled in software properly)



Introducing ApplicationCore

DOOCS server library

DOOCS client / panel

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 6



Introducing ApplicationCore

DOOCS server library

DOOCS client / panel

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC ApplicationCore
I Framework for writing control applications independent of

the control system middleware
I Unifies interfaces of DeviceAccess and the control system
I Encourage modularity of applications

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 6



The structure of ApplicationCore

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 7

I Modules merely have inputs
and outputs

I Implementations of algorithms
do not need to know how its
variables are connected

I Modern multithreading:
lock-free communication
between modules (“for free”)

I Perfect modularity, as modules
are self-contained

I Simpler code!



The structure of ApplicationCore

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 7

I Modules merely have inputs
and outputs

I Implementations of algorithms
do not need to know how its
variables are connected

I Modern multithreading:
lock-free communication
between modules (“for free”)

I Perfect modularity, as modules
are self-contained

I Simpler code!



The structure of ApplicationCore

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 7

I Modules merely have inputs
and outputs

I Implementations of algorithms
do not need to know how its
variables are connected

I Modern multithreading:
lock-free communication
between modules (“for free”)

I Perfect modularity, as modules
are self-contained

I Simpler code!



The structure of ApplicationCore

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 7

I Modules merely have inputs
and outputs

I Implementations of algorithms
do not need to know how its
variables are connected

I Modern multithreading:
lock-free communication
between modules (“for free”)

I Perfect modularity, as modules
are self-contained

I Simpler code!



The structure of ApplicationCore

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 7

I Modules merely have inputs
and outputs

I Implementations of algorithms
do not need to know how its
variables are connected

I Modern multithreading:
lock-free communication
between modules (“for free”)

I Perfect modularity, as modules
are self-contained

I Simpler code!



Excursus: Update modes

I Analog to the client/server concept:
I Client/server is about who initiates a connection
I Update mode is about who initiates a data transfer

I A trigger makes it possible:

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 8



Excursus: Update modes

I Analog to the client/server concept:
I Client/server is about who initiates a connection
I Update mode is about who initiates a data transfer

I A trigger makes it possible:

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 8



Excursus: Update modes

I Analog to the client/server concept:
I Client/server is about who initiates a connection
I Update mode is about who initiates a data transfer

I A trigger makes it possible:

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 8



Excursus: Update modes

I Analog to the client/server concept:
I Client/server is about who initiates a connection
I Update mode is about who initiates a data transfer

I A trigger makes it possible:

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 8



Excursus: Update modes

I Analog to the client/server concept:
I Client/server is about who initiates a connection
I Update mode is about who initiates a data transfer

I A trigger makes it possible:

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 8



Excursus: Update modes

I Analog to the client/server concept:
I Client/server is about who initiates a connection
I Update mode is about who initiates a data transfer

I A trigger makes it possible:

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 8

Typical devices (and most control system applications)
I A typical “passive” device has poll-type read variables

and push-type write variables
I For push-type read, e.g. hardware interrupts are required



A simple ApplicationModule

struct Controller : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> sp{this, "temperatureSetpoint", "degC", "Description"};
ctk::ScalarPushInput<double> rb{this, "temperatureReadback", "degC", "..."};
ctk::ScalarOutput<double> cur{this, "heatungCurrent", "mA", "..."};

void mainLoop() {
const double gain = 100.0;
while(true) {

rb.read(); // waits until rb updated
sp.read(); // just get latest value of sp
cur = gain * (sp - rb);
cur.write();

}
}

};

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 9



A simple ApplicationModule

struct Controller : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> sp{this, "temperatureSetpoint", "degC", "Description"};
ctk::ScalarPushInput<double> rb{this, "temperatureReadback", "degC", "..."};
ctk::ScalarOutput<double> cur{this, "heatungCurrent", "mA", "..."};

void mainLoop() {
const double gain = 100.0;
while(true) {

rb.read(); // waits until rb updated
sp.read(); // just get latest value of sp
cur = gain * (sp - rb);
cur.write();

}
}

};

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 9

Rule of thumb
I Measurement data inputs are made push-type
I Parameters (e.g. from panel) are poll-type



A simple ApplicationModule

struct Controller : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> sp{this, "temperatureSetpoint", "degC", "Description"};
ctk::ScalarPushInput<double> rb{this, "temperatureReadback", "degC", "..."};
ctk::ScalarOutput<double> cur{this, "heatungCurrent", "mA", "..."};

void mainLoop() {
const double gain = 100.0;
while(true) {

readAll(); // waits until rb updated, then reads sp

cur = gain * (sp - rb);
writeAll(); // writes any outputs

}
}

};

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 9



A simple ApplicationModule

struct Controller : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> sp{this, "temperatureSetpoint", "degC", "Description"};
ctk::ScalarPushInput<double> rb{this, "temperatureReadback", "degC", "..."};
ctk::ScalarOutput<double> cur{this, "heatungCurrent", "mA", "..."};

void mainLoop() {
const double gain = 100.0;
while(true) {

readAll(); // waits until rb updated, then reads sp

cur = gain * (sp - rb);
writeAll(); // writes any outputs

}
}

};

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 9

see example2/demoApp.cc in ApplicationCore source code on github (incl. following slides)



Define the application

struct ExampleApp : public ctk::Application {
ExampleApp() : Application("exampleApp") {}
~ExampleApp() { shutdown(); }

Controller controller{this, "Controller", "The Controller"};

ctk::PeriodicTrigger timer{this, "Timer", "Periodic timer (1000ms period)", 1000};

ctk::DeviceModule heater{"oven","heater"};
ctk::ControlSystemModule cs{"Bakery"};

void defineConnections();
};
static ExampleApp theExampleApp;

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 10



Define the application

struct ExampleApp : public ctk::Application {
ExampleApp() : Application("exampleApp") {}
~ExampleApp() { shutdown(); }

Controller controller{this, "Controller", "The Controller"};

ctk::PeriodicTrigger timer{this, "Timer", "Periodic timer (1000ms period)", 1000};

ctk::DeviceModule heater{"oven","heater"};
ctk::ControlSystemModule cs{"Bakery"};

void defineConnections();
};
static ExampleApp theExampleApp;

No main() fu
nction

shall be
defined

, it is c
oming from the framework!

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 10



Connect the module with device and control system - Step I

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 11

void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");

controller.connectTo(heater, timer.tick); // use periodic timer as trigger for readout
controller.connectTo(cs);

}

Something is missing...
I A.connectTo(B) will connect all variables in A with the variables of the same name in B
I controller.sp is a control system variable and does not exist in the hardware device

I Explicitly connecting each variable is possible, but annoying
I We need to filter variables based on additional information



Connect the module with device and control system - Step I

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 11

void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");

controller.connectTo(heater, timer.tick); // use periodic timer as trigger for readout
controller.connectTo(cs);

}

Something is missing...
I A.connectTo(B) will connect all variables in A with the variables of the same name in B
I controller.sp is a control system variable and does not exist in the hardware device
I Explicitly connecting each variable is possible, but annoying
I We need to filter variables based on additional information



Connect the module with device and control system - Step II

struct Controller : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> sp{this, "temperatureSetpoint", "degC", "Description", {"CS"}};
ctk::ScalarPushInput<double> rb{this, "temperatureReadback", "degC", "...", {"DEV", "CS"}};
ctk::ScalarOutput<double> cur{this, "heatungCurrent", "mA", "...", {"DEV"}};

void mainLoop() {
const double gain = 100.0;
while(true) {

readAll(); // waits until rb updated, then reads sp

cur = gain * (sp - rb);
writeAll(); // writes any outputs

}
}

};

tags

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 12



Connect the module with device and control system - Step II

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 13

void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");

controller.findTag("DEV").connectTo(heater, timer.tick);
controller.findTag("CS").connectTo(cs);

}

Tags
I Tag names can be arbitrarily chosen
I Any number of tags can be attached to each process variable
I Fancy searches possible as well...



Connect the module with device and control system - Step II

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 13

void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");

controller.findTag("DEV").connectTo(heater, timer.tick);
controller.findTag("CS").connectTo(cs);

}

Tags
I Tag names can be arbitrarily chosen
I Any number of tags can be attached to each process variable
I Fancy searches possible as well...

That’s it!
I At this point, the application is complete and can run!



Adding an automation module

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 14



Adding an automation module

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 15

struct Automation : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> opSp{this, "operatorSetpoint", "degC", "...", {"CS"}};
ctk::ScalarOutput<double> actSp{this, "temperatureSetpoint", "degC", "...", {"Controller"}};
ctk::ScalarPushInput<uint64_t> trigger{this, "trigger", "", "..."};

void mainLoop() {
const double maxStep = 0.1;
while(true) {

readAll(); // waits until trigger received, then read opSp
actSp += std::max(std::min(opSp - actSp, maxStep), -maxStep); // ramp sp slowly
writeAll();

}
}

};

see example2a/demoApp.cc in ApplicationCore source code



Adding an automation module

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 15

struct Automation : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> opSp{this, "operatorSetpoint", "degC", "...", {"CS"}};
ctk::ScalarOutput<double> actSp{this, "temperatureSetpoint", "degC", "...", {"Controller"}};
ctk::ScalarPushInput<uint64_t> trigger{this, "trigger", "", "..."};

void mainLoop() {
const double maxStep = 0.1;
while(true) {

readAll(); // waits until trigger received, then read opSp
actSp += std::max(std::min(opSp - actSp, maxStep), -maxStep); // ramp sp slowly
writeAll();

}
}

};

struct ExampleApp : public ctk::Application {
[...]
Controller controller{this, "Controller", "The Controller"};
Automation automation{this, "Automation", "Slow setpoint ramping algorithm"};
[...]

void defineConnections();
};

unchanged!
added

unchanged!



Adding an automation module

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 15

struct Automation : public ctk::ApplicationModule {
using ctk::ApplicationModule::ApplicationModule;
ctk::ScalarPollInput<double> opSp{this, "operatorSetpoint", "degC", "...", {"CS"}};
ctk::ScalarOutput<double> actSp{this, "temperatureSetpoint", "degC", "...", {"Controller"}};
ctk::ScalarPushInput<uint64_t> trigger{this, "trigger", "", "..."};

void mainLoop() {
const double maxStep = 0.1;
while(true) {

readAll(); // waits until trigger received, then read opSp
actSp += std::max(std::min(opSp - actSp, maxStep), -maxStep); // ramp sp slowly
writeAll();

}
}

};

void ExampleApp::defineConnections() { // (setDMapFilePath omitted)
automation.findTag("Controller").connectTo(controller);
automation.findTag("CS").connectTo(cs);
timer.tick >> automation.trigger;

controller.findTag("DEV").connectTo(heater, timer.tick);
controller.findTag("CS").connectTo(cs);

}

added

unchanged!



Configuration

I Configuration can be used in defineConnections() for static configuration

I It can also be connected as (never changing) variables to modules or the control system

struct ExampleApp : public ctk::Application {
[...]
ctk::ConfigReader config{this, "Configuration", "demoApp2a.xml"};
Automation automation;
[...]

};

void ExampleApp::defineConnections() {
[...]

if(config.get<int>("enableAutomation")) {
automation = Automation(this, "Automation", "Slow setpoint ramping algorithm");
automation.findTag("Controller").connectTo(controller);
automation.findTag("CS").connectTo(cs);
timer.tick >> automation.trigger;

}
[...]

}

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 16

<configuration>
<variable name="enableAutomation" type="int32" value="1"/>

</configuration>



Configuration

I Configuration can be used in defineConnections() for static configuration
I It can also be connected as (never changing) variables to modules or the control system

struct ExampleApp : public ctk::Application {
[...]
ctk::ConfigReader config{this, "Configuration", "demoApp2a.xml"};
Automation automation;
[...]

};

void ExampleApp::defineConnections() {
[...]
config.connectTo(cs);
if(config.get<int>("enableAutomation")) {

automation = Automation(this, "Automation", "Slow setpoint ramping algorithm");
automation.findTag("Controller").connectTo(controller);
automation.findTag("CS").connectTo(cs);
timer.tick >> automation.trigger;

}
[...]

}

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 16

<configuration>
<variable name="enableAutomation" type="int32" value="1"/>

</configuration>



Hierarchies

I Current variables in the control system:
I operatorSetpoint (writeable)
I temperatureSetpoint (read only)
I temperatureReadback (read only)
I enableAutomation (read only)

I Names are missing the context! Want to have:
I Automation/operatorSetpoint
I Controller/temperatureSetpoint
I Controller/temperatureReadback
I Configuration/enableAutomation

I In the example, we just need to connect to the control system differently:

findTag("CS").connectTo(cs);

This works on all modules in the application (and even saves two lines of code)!
I ApplicationCore allows to build arbitrary hierarchies:

I VariableGroup
I ModuleGroup

Should be used to structure the application logically!

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 17



Hierarchies

I Current variables in the control system:
I operatorSetpoint (writeable)
I temperatureSetpoint (read only)
I temperatureReadback (read only)
I enableAutomation (read only)

I Names are missing the context! Want to have:
I Automation/operatorSetpoint
I Controller/temperatureSetpoint
I Controller/temperatureReadback
I Configuration/enableAutomation

I In the example, we just need to connect to the control system differently:

findTag("CS").connectTo(cs);

This works on all modules in the application (and even saves two lines of code)!
I ApplicationCore allows to build arbitrary hierarchies:

I VariableGroup
I ModuleGroup

Should be used to structure the application logically!

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 17



Hierarchies

I Current variables in the control system:
I operatorSetpoint (writeable)
I temperatureSetpoint (read only)
I temperatureReadback (read only)
I enableAutomation (read only)

I Names are missing the context! Want to have:
I Automation/operatorSetpoint
I Controller/temperatureSetpoint
I Controller/temperatureReadback
I Configuration/enableAutomation

I In the example, we just need to connect to the control system differently:

findTag("CS").connectTo(cs);

This works on all modules in the application (and even saves two lines of code)!
I ApplicationCore allows to build arbitrary hierarchies:

I VariableGroup
I ModuleGroup

Should be used to structure the application logically!

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 17



Control system integration

DOOCS server library

DOOCS client / panel

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 18



Control system integration

DOOCS server library

DOOCS client / panel

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

Idea
I Introduce similar abstraction as for the

hardware access
I Not trivial - control system middleware

much more than just a communication
layer

I Try not to create a new control system!

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 18



Control system integration

OPC UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Control System Adapter 

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

Idea
I Introduce similar abstraction as for the

hardware access
I Not trivial - control system middleware

much more than just a communication
layer

I Try not to create a new control system!

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 18



Control system integration

OPC UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Control System Adapter 

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 18



Control system integration

OPC UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Control System Adapter 

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 18



Control system integration

OPC UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Control System Adapter 

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 18



Control system integration

Control System Integration
Configuration Files

OPC UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Control System Adapter 

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

I EPICS: db files etc.
I rename variables
I enable control system

specific features (histories,
alarms...)

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 18



Testing the application

Control System Adapter 

ApplicationApplicationCore Library

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

Test
Application Core
Testable Mode

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 19



Summary

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 20

I ChimeraTK-ApplicationCore
unifies DeviceAccess and
ControlSystemAdapter

I Self-contained modules
I Modern multi-threading

(“for free”)
I Optional mapping layers to

catch interface changes



Summary

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 20

I ChimeraTK-ApplicationCore
unifies DeviceAccess and
ControlSystemAdapter

I Self-contained modules
I Modern multi-threading

(“for free”)
I Optional mapping layers to

catch interface changes

by Manu Cornet (www.bonkersworld.net)



How to get started...

#include <ApplicationCore.h>
#include <PeriodicTrigger.h>
namespace ctk = ChimeraTK;

struct ExampleApp : public ctk::Application {
ExampleApp() : Application("exampleApp") {}
~ExampleApp() { shutdown(); }

ctk::PeriodicTrigger timer{this, "Timer", "Periodic timer (1000ms period)", 1000};

ctk::DeviceModule dev{"oven"};
ctk::ControlSystemModule cs{"Bakery"};

void defineConnections();
};
static ExampleApp theExampleApp;

void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");
dev.connectTo(cs, timer.tick);

}

Yes, this is 100% complete! (but requires the head revision of ChimeraTK...)

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 21



How to get started...

#include <ApplicationCore.h>
#include <PeriodicTrigger.h>
namespace ctk = ChimeraTK;

struct ExampleApp : public ctk::Application {
ExampleApp() : Application("exampleApp") {}
~ExampleApp() { shutdown(); }

ctk::PeriodicTrigger timer{this, "Timer", "Periodic timer (1000ms period)", 1000};

ctk::DeviceModule dev{"oven"};
ctk::ControlSystemModule cs{"Bakery"};

void defineConnections();
};
static ExampleApp theExampleApp;

void ExampleApp::defineConnections() {
ChimeraTK::setDMapFilePath("example2.dmap");
dev.connectTo(cs, timer.tick);

}

Yes, this is 100% complete! (but requires the head revision of ChimeraTK...)

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 21

Availability of ChimeraTK
I All ChimeraTK libraries are released as open source under LGPL license
I Source code: https://github.com/ChimeraTK
I Documentation: https://chimeratk.github.io
I Debian packages for Ubuntu 16.04: https://chimeratk.github.io
I Launchpad-hosted PPA (for all Ubuntu versions) is in preparation



Backup slides•

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 22



New backends and features in existing backends

I New backends: OPC UA client; native EPICS client
I Logical name mapping features:

I Use parameters defined in ChimeraTK device descriptor (i.e. DMAP file) inside the map file, e.g. to
reuse the same map file for multiple target devices

I Support more data types for constants and variables (i.e. dummy registers)
I Subdevice backend features:

I Unfold address space of devices with different layout in the mother device, e.g. two scalar registers
(address and value)

I DOOCS backend:
I Support for more DOOCS types including aggregated data types

I PCI express backend:
I Support for interrupts
I Support for floating point values

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 23



Introduce new supported data types in all ChimeraTK libraries

Currently supported data types: (u)int8, (u)int16, (u)int32, (u)int64, float, double, std::string
I bool

I Often provided by hardware, e.g. status bits
I Supported by many control systems, sometimes improved user experience compared to integer with

value 0 and 1

I void
I No data is transported
I Only useful in combination with push-type variables
I Represents an interrupt or event or trigger
I At least EPICS and DOOCS support something similar, exact representation should be discussed
I Also internally useful in applications to efficiently distribute events/triggers

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 24



Introduce new supported data types in all ChimeraTK libraries

Currently supported data types: (u)int8, (u)int16, (u)int32, (u)int64, float, double, std::string
I bool

I Often provided by hardware, e.g. status bits
I Supported by many control systems, sometimes improved user experience compared to integer with

value 0 and 1
I void

I No data is transported
I Only useful in combination with push-type variables
I Represents an interrupt or event or trigger
I At least EPICS and DOOCS support something similar, exact representation should be discussed
I Also internally useful in applications to efficiently distribute events/triggers

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 24



ControlSystemAdapter and ApplicationCore: bidirectional variables

Current situation: all variables in ApplicationCore are unidirectional
I Originally not implemented, since the concept is difficult and dangerous
I Variables should never really be bidirectional, that would lead to race conditions and infinite value

oscillations
I Important and valid use cases:

I Correction of an out-of-range value
I Automation which runs on user request to determine a value which otherwise can be changed by the

user (e.g. a calibration value)
I ...

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 25



ApplicationCore: exception handling

Current situation: Exceptions cannot properly be handled in ApplicationCore - they are often thrown in
a non-user thread and just will terminate the application.

I logic_error exceptions point to a programming or configuration issue and usually occur directly
after starting the application. They should terminate the application.

I runtime_error exceptions can occur any time and should be properly handled without stopping the
application

I Handling should be done per device
I Exceptions should be caught automatically by ApplicationCore
I Error status can be published to the control system (status flag + message string of exception per

device)
I Each ApplicationModule using the faulty device will be automatically paused until the device is

back online
I Maybe: add per-variable flag showing which parts are offline (DOOCS supports this, what about

other control systems?)

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 26



Direct connections between devices and the control system

(Experimental feature, not yet released...)
I ApplicationCore can guess the data type based on the information in the catalogue.
I Use the smallest possible data type fitting the data
I Direction can be derived from read/write flags:

I Read-only registers will be device-to-controlsystem
I Write-only registers (rare) will be controlsystem-to-device
I Read-write registers will also be controlsystem-to-device, since they are usually never changed by the

device (only readback of the current value possible)
I Transfer mode (poll/push) depends on register capabilities
I Planned: Exceptions from these automatic rules can still be made by providing the information

per-variable (or maybe per connectTo()?)

M. Hierholzer, M. Killenberg (DESY) ChimeraTK ApplicationCore 27


